Comparison of Properties of Medial Entorhinal Cortex Layer II Neurons in Two Anatomical Dimensions with and without Cholinergic Activation

نویسندگان

  • Motoharu Yoshida
  • Arthur Jochems
  • Michael E. Hasselmo
چکیده

Mechanisms underlying grid cell firing in the medial entorhinal cortex (MEC) still remain unknown. Computational modeling studies have suggested that cellular properties such as spike frequency adaptation and persistent firing might underlie the grid cell firing. Recent in vivo studies also suggest that cholinergic activation influences grid cell firing. Here we investigated the anatomical distribution of firing frequency adaptation, the medium spike after hyperpolarization potential (mAHP), subthreshold membrane potential oscillations, sag potential, input resistance and persistent firing, in MEC layer II principal cells using in vitro whole-cell patch clamp recordings in rats. Anatomical distributions of these properties were compared along both the dorso-ventral and medio-lateral axes, both with and without the cholinergic receptor agonist carbachol. We found that spike frequency adaptation is significantly stronger in ventral than in dorsal neurons both with and without carbachol. Spike frequency adaptation was significantly correlated with the duration of the mAHP, which also showed a gradient along the dorso-ventral axis. In carbachol, we found that about 50% of MEC layer II neurons show persistent firing which lasted more than 30 seconds. Persistent firing of MEC layer II neurons might contribute to grid cell firing by providing the excitatory drive. Dorso-ventral differences in spike frequency adaptation we report here are opposite from previous predictions by a computational model. We discuss an alternative mechanism as to how dorso-ventral differences in spike frequency adaptation could contribute to different scales of grid spacing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscarinic Suppression of Excitatory Synaptic Responses in Layer II of the Entorhinal Cortex

Entitled: Muscarinic suppression of excitatory synaptic responses in layer II of the entorhinal cortex and submitted in partial fulfillment of the requirements for the degree of Masters of Psychology complies with the regulations of the University and meets the accepted standards with respect to originality and quality. The entorhinal cortex is thought to play a role in mechanisms mediating sen...

متن کامل

Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex.

In vitro whole cell patch-clamp recordings of stellate cells in layer II of medial entorhinal cortex show a subthreshold membrane potential resonance in response to a sinusoidal current injection of varying frequency. Physiological recordings from awake behaving animals show that neurons in layer II medial entorhinal cortex, termed "grid cells," fire in a spatially selective manner such that ea...

متن کامل

Target selectivity of septal cholinergic neurons in the medial and lateral entorhinal cortex

The entorhinal cortex (EC) plays a pivotal role in processing and conveying spatial information to the hippocampus. It has long been known that EC neurons are modulated by cholinergic input from the medial septum. However, little is known as to how synaptic release of acetylcholine affects the different cell types in EC. Here we combined optogenetics and patch-clamp recordings to study the effe...

متن کامل

Structural development and dorsoventral maturation of the medial entorhinal cortex.

We investigated the structural development of superficial-layers of medial entorhinal cortex and parasubiculum in rats. The grid-layout and cholinergic-innervation of calbindin-positive pyramidal-cells in layer-2 emerged around birth while reelin-positive stellate-cells were scattered throughout development. Layer-3 and parasubiculum neurons had a transient calbindin-expression, which declined ...

متن کامل

Title: Development of Cholinergic Modulation and Graded Persistent Activity in Layer V of Medial Entorhinal Cortex Authors:

During muscarinic modulation, principal neurons from layer V of rat medial entorhinal cortex (mEC) respond to repeated applications of a brief stimulus with a graded change in persistent firing frequency. This pattern of discharge has been proposed to represent an intrinsic mechanism for short-term memory operations. To investigate the implementation of persistent activity in mEC during develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013